

Welcome to passwordmetrics’s documentation!

Contents:

	passwordmetrics
	Features

	Features

	Installation

	Password strength
	How to get your users to have strong passwords

	Usage
	Basic usage

	Advanced usage

	The metrics

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Development

	Obvious inspiration

	History
	1.1 (unreleased)

	1.0 (2017-04-15)

	1.0b1 (2015-04-29)

Indices and tables

	Index

	Module Index

	Search Page

passwordmetrics

Features

The passwordmetrics module takes a string and gives you a lot of information
about it pertaining it’s usefulness as a password.

	Free software: MIT license

	Documentation: http://passwordmetrics.readthedocs.org.

Features

	Gives you a lot of information about a password, such as:
* Words used in the password
* Entropy (ie, how hard it is to guess)

	It’s configurable for different languages.

	A big english wordlist included.

	L33t compatibility

Installation

At the command line:

$ pip install passwordmetrics

Password strength

Password strength is a measure of the effectiveness of a password in resisting
guessing and brute-force attacks.[1]_ Since users like to have passwords that
are easy to remember, they tend to pick weak passwords that are easy to guess.

Many administrators of systems and sites try to force their users to have more
secure passwords by forcing a length or requiring that you use both uppercase
and lowercase, or add punctuation, etc. This XKCD cartoon illustrates why
this is a bad idea:

[image: https://imgs.xkcd.com/comics/password_strength.png]
In addition, many users will just take their weak password and add ones and
exclemation marks to it. So instead of “banana” they now have “Banana1!”.
That is harder to guess, but not a lot harder.

The most secure passwords are long passwords with randomly generated characters,
such as “/JGuJzxbm<K%n3d^7#,)”. This is however hard to remember and type,
so it’s a good password for when you have a password manager, like in your
web browser, but not a good password for an admin password on a computer.

How to get your users to have strong passwords

The passwordmetrics package enables you to get a measurement of how hard the
entered password is to guess. The ‘entropy’ is a measurement that is
approximately how many bits of information is contained in the password, and
therefore how hard it is to guess. The higher, the better.

You can then tell your users if that is a weak, average or strong password.
Google’s user management is a good example of a UI that does this correctly.
You can also set a minimum strength.

To determine what is “good”, run pass wordmetrics on a couple of passwords you
would think are good, and use the resulting number as a measurement.

For reference, “banana”, a password that is unacceptably easy, has an entropy
of approximately, 6. The above 20 character random string has an entropy of
around 124, and XKCD’s “correcthorsebatterystaple” has an entropy of around 45.

	[1]	http://en.wikipedia.org/wiki/Password_strength

Usage

Basic usage

To use passwordmetrics you import it and run the configure method.

>>> import passwordmetrics
>>> passwordmetrics.configure()

You can then get metrics for passwords:

>>> passwordmetrics.metrics('correcthorseb!wdbatterystaplerWd6t')
{'unused_groups': {'whitespace', 'non-printable', 'other'},
 'word_entropy': 53.48690135737497,
 'entropy': 99.36902331911844,
 'words': {'battery', 'i', 'horse', 'stapler', 'correct'},
 'unknown_chars': set(),
 'used_groups': {'digits', 'uppercase', 'lowercase', 'punctuation'},
 'length': 34,
 'character_entropy': 45.882121961743465}

Advanced usage

The configure method makes it possibly to configure passwordmetrics for
your usecase. This is particularily useful if you want to have
language-specific wordlists or character groups:

>>> import passwordmetrics
>>> import string
>>> from io import open

>>> groups = {'lowercase': set(u'abcdefghijklmnopqrstuvxyz\xe5\xe4\xf6'),
... 'uppercase': set(u'ABCDEFGHIJKLMNOPQRSTUVXYZ\xc5\xd4\xd6'),
... 'digits': set(string.digits),
... 'punctuation': set(string.punctuation),
... 'whitespace': set(string.whitespace),
... }

>>> words = {}
>>> with open('docs/ordlista_sv.txt', 'rt', encoding='latin-1') as wordlist:
... for line in wordlist.readlines():
... word, entropy = line.strip().split(' ')
... words[word] = float(entropy)

>>> substitutions = {'0': 'o', '1': 'i', '2': 'z', '3': 'e', '4': 'a',
... '5': 's', '6': 'b', '7': 't', '8': 'b', '9': 'g',
... '!': 'i', '#': 3, '$': 's', '&': 'g', '@': 'a',
... '[': 'c', '(': 'c', '+': 't', '{': '\xe4', '|': '\xf6',
... '}': '\xe5', '[': '\xd4', '\\': '\xd6', ']': '\xc5'}

>>> passwordmetrics.configure(groups=groups, words=words, substitutions=substitutions)
>>> passwordmetrics.metrics(u'korrekth\xe4stbatterih\xe4ftapparat')
{'unused_groups': {'digits', 'uppercase', 'punctuation', 'whitespace'},
 'word_entropy': 29.3,
 'entropy': 29.3,
 'words': {u'batteri', u'korrekt', u'h\xe4ftapparat', u'h\xe4st'},
 'unknown_chars': set(),
 'used_groups': {'lowercase'},
 'length': 29,
 'character_entropy': 0}

groups

groups are character groups, such as digits, lowercase and uppercase. You
pass in sets of characters, and passwordmetrics will tell you which ones
were used. This is so that you, if desired, can disallow certain character
groups. You can also, of course, force certain character groups, but that is
a bad idea (more on that elsewhere).

words

words is a mapping of words to word frequency values. It is used to find
words in the password and base a calculation of the entropy based on that.
For example, a password containing common words should have a lower
entropy than a password containing uncommon words, as it is easier to guess.

substitutions

substitutions are character mappings for “leet” character substitutions.
For example, the words “alive” can be written “al1v3” in a way to make it
harder to guess. A mapping of substitutions is used to try and find words.
This is because a word with substitutions is easier to guess than a random
character string, although it is harder to guess than the same word without
substitutions.

The metrics

The returned metrics are:

	entropy: A relative measure of how hard a password is to guess.

	length: The total length of the password.

	words: The words found in the password.

	word_entropy: The entropy of the words.

	character_entropy: The entropy of any characters not found in any words.

	used_groups: The character groups used.

	unused_groups: Any character groups that were not used.

	unknown_chars: Characters in the password that were not found in any groups.

Most of the metrics returned are returned only for completeness, not because
they are very useful.

length is useful if you have a maximum password length your system can
handle and used_groups and unknown_chars is useful to make sure there
are no characters your system can’t handle.

The most important metric is the “entropy”. The higher the harder it is to
guess the passwords, and the harder it will be to forcibly crack the password.
Giving the user feedback on how safe/unsafe the password is based on this is
a good way to ensure that you have safe passwords.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/regebro/passwordmetrics/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

passwordmetrics could always use more documentation, whether as part of the
official passwordmetrics docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/regebro/passwordmetrics/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up passwordmetrics for local development.

	Fork the passwordmetrics repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/passwordmetrics.git

	Install spiny for running tests:

$ pip install spiny

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with spiny:

$ python setup.py test # Tests with one Python version
$ spiny # Tests with all supported Python versions

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests, and they should pass for all
supported Python versions.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

Credits

Development

	Lennart Regebro <regebro@gmail.com>

Obvious inspiration

	http://xkcd.com/936/

History

1.1 (unreleased)

	Nothing changed yet.

1.0 (2017-04-15)

	Stable release, better docs.

1.0b1 (2015-04-29)

	First release on PyPI.

Index

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to passwordmetrics's documentation!

 		passwordmetrics

 		Features

 		Features

 		Installation

 		Password strength

 		How to get your users to have strong passwords

 		Usage

 		Basic usage

 		Advanced usage

 		groups

 		words

 		substitutions

 		The metrics

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Credits

 		Development

 		Obvious inspiration

 		History

 		1.1 (unreleased)

 		1.0 (2017-04-15)

 		1.0b1 (2015-04-29)

_static/comment-bright.png

